3 research outputs found

    Development of Optical Biosensor Technologies for Cardiac Troponin Recognition

    Get PDF
    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4–10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years

    Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering

    Get PDF
    Among several attempts to integrate tissue engineering concepts into strategies to repair different parts of the human body, neuronal repair stands as a challenging area due to the complexity of the structure and function of the nervous system and the low efficiency of conventional repair approaches. Herein, electrospun polyvinyl alcohol (PVA)/chitosan nano-fibrous scaffolds have been synthesized with large pore sizes as potential matrices for nervous tissue engineering and repair. PVA fibers were modified through blending with chitosan and porosity of scaffolds was measured at various levels of their depth through an image analysis method. In addition, the structural, physicochemical, biodegradability, and swelling of the chitosan nanofibrous scaffolds were evaluated. The chitosan-containing scaffolds were used for in vitro cell culture in contact with PC12 nerve cells, and they were found to exhibit the most balanced properties to meet the basic required specifications for nerve cells. It could be concluded that addition of chitosan to the PVA scaffolds enhances viability and proliferation of nerve cells, which increases the biocompatibility of the scaffolds. In fact, addition of a small percentage of chitosan to the PVA scaffolds proved to be a promising approach for synthesis of a neural-friendly polymeric blend
    corecore